Review of a parallel High
Level Trigger benchmark
(using multithreading
and/or SSE)

openlab

19.02.2008

Havard Bjerke

\»
a7 Background
CERN

openlab

" Reconstruction of events

Fixed target detector

\ » .
s iy Reconstruction Challenges

CERN

openlab

1. Track finding
* High frequency of collisions (LHC: 40 MHz)
" Alot of irrelevant particle noise

" Needs to be filtered in order to concentrate on
most important data

Erzeugung eines Keimebenen 1)
zwelten Zwelges
- JU
[] [] -— S » | ‘
2. Track fittin e S)
) 3) 4) -
P4 e 2)

" Measurements are imprecise

* Estimate real trajectories &
3. Find vertices @é —

\»
oy Track finding

.'

CERN

openlab

" Filtering: Remove particle tracks that are not
Interesting

" Example filter rule: remove all particles that
are not, for instance, muons

" Some simple rules can be applied already at
the hardware level, with dedicated chips

" More advanced rules are applied in an on-line
compute farm

\' »
W Track fitting

e
EPEE.-M “ Find the real
trajectory of particles
from imprecise
observations of the

particles

" Kalman filter
" Estimates real trajectory from imprecise
measurements

" Computes trajectory based on error correcting
feedback

\»
s by High-Level Trigger code

CERN

openlab

" Tracing particles through a magnetic field

" Each track is calculated independently
" Embarrassingly parallel
" Optimization

* Step 1: use vectors instead of scalars

 Allows exploitation of SIMD instructions

" Step 2: use multithreading

 Allows exploitation of multiple cores

\ »
N\ e Explicit vectorisation

.'

CERN

openlab

" Operator overloading allows seamless
change of data types, even between
primitives (e.g. float) and classes

" Two classes
" P4_F32vec4 — packed single

v operator + = _mm_add_ps
“ ICPp = _Mmm_rcp_ps

" P4 F64vec2 — packed double
v operator + = _mm_add_pd

* rcp: No_mm_rcp pd!/Use 1./a

\»

a7 Vectorised calculation
CERN
openlab
dz=z-20
for #tracks { for #tracks/4 {
dz[#] = z[#] — zO[#] vdz[#] = vz[#] - vzO[#]
} }
32 bits 128 bits
y4 y4 y4 y4 y4
z0 z0 z0 z0 z0
—

dz dz dz dz dz

a7 SIMD implementation
GERN

" Three modes

* Scalar (SISD) double, 128 bits
X877 | | |

1 scalar double precision
calculation per instruction

" Packed double

« 2 scalar double precision
calculations per instruction

" Packed single | | | | !

» 4 scalar single precision
calculations per instruction

a7 Performance measurements
CERN

openlab

" Woodcrest @ 2.4 GHz using ICC 9.1

Calculation time | Incremental Total speedup
per track / us speedup from scalar

scalar 2.6 1 1
double 1.6 1.6 1.6
single 0.7 2.3 3.7

10

\»

s by Performance counters
CERN
openlab
Instruction type scalar double single
computational scalar double -
computational packed double : 0.0
total packed double : 0.0

total SIMD 171.9 9.0 E.Y
total YE.V V.Y 1-.9

11

\ ' . .
a7 Multithreading

CERN
openlab " |nte| Threading Building Blocks

" parallel_for
" #tasks = #tracks / grain_size
" #threads <= #tasks

loops = / 4
4 tasks
~
grain_size
for(int i = 0; i < n tracks / 4; i++){
Fit(track vector[i], ...);
}

J L

parallel for(blocked range<int>(
0, n tracks / 4, grain size),
ApplyFit(track vectors, ...));

12

\ »
g Measurements

o) §
openlab 10

® Cell SPE (approx)
< icc/woodcrest@3.0
» gcca.1.2/clovertown@2.4
‘B 5cc3.4.6/clovertown@2.4
M icc/clovertown@2.4

Real fit

time/track

(us)

Logarithmic

scale!

13

\ »
" by Observations

CERN

openlab

" Cell (16-way) and Clovertown w/ 8 cores have
highest throughput

" Woodcrest w/ 4 cores has best per-core
performance

" GCC 4.1.2 has doubled vectorised code
performance of 3.4.6

14

\ »
" iy Measurements - ltanium

CERN

openlab 5
A icc10.1.011@itanium
4.5, > scalar/icc9.1/clovertown
4
3.5
3p
Real fit
_ 2.5
time/track
2 A
(us)
1.5 >
1 A
>
0.5 . ;
0
1 2 4 8 16

#tasks

15

\»
s iy Total speedup
CERN

openlab

" Total speedup w/ both optimizations:
3.7/0.12 =30

>

3.5 > gcea.1.2/clovertown
M icc/clovertown
3)¢
Real fit 2°
. >
time/track 2 ’
(us) 1.5
’
<
0.5 N
o b >
0
scalar double single -> 2 4 8 16

16

..\ .'-

.'

CERN

openlab

Conclusion

“ Track fitting with the Kalman Filter is
embarrassingly parallel and scales well over
multiple cores

" A lot of time (= money) can be saved by
properly optimizing parallel reconstruction
code

" Example vectorisation speedup from scalar
double to packed single: 3.7

" Example multithreading speedup on 8 cores: 7.2

" Proportional speedup increase can be expected

with future architectures

17

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

